
���������
	���

A general presentation of the modules library effort was presented by P.Talou at the beginning of the
meeting, describing its goals, structure, individual module structure, mail/web communication tools,
and a list of items to be discussed during the meeting. This presentation was followed by various more
specific presentations on RIPL-2/3 (M. Herman), a new numerical tools module (T. Kawano), the
width fluctuation module delivered earlier to the developers mailing list (P. Talou), and a brief
presentation of the Livermore code MOARC (F. Dietrich). The rest of the meeting was devoted to the
discussion on more technical topics. Various decisions have been made regarding the structure of the
library, the structure of the individual modules, version numbering, test cases, etc (see detailed list in
the report). Finally, a panel discussion allowed to provide an updated list of modules that are
considered important to the developers community (this may change according to suggestions of
developers not present at the meeting).

�����	�����������������

Instead of going through each and every presentation held during the meeting, this report will try to
describe each technical item for which a decision has been taken, or where further discussion among
participants is needed.

Structure of the Library:

The overall structure of the library had already been discussed in previous meetings, but it was
important to make sure that we all understand/embrace the same concepts and that we agree on a
common structure. This structure is represented schematically on the following figure:

There are some "elementary" modules, such as Accuracy and Physics/Constants, which may
be used by most other modules. More "complex" modules are the ones which deal with the physics

problems at hand, such as Level Density (Koning) and Width Fluctuations (Talou et al.).
These modules should be as independent as possible from each other, ensuring that the modules
dependencies remain quite simple.

The module Definitions contains "abstract" declaration of new global objects, to be used in
various other modules. For example (as taken from Arjan's level density module),

type particle_type
 character(len=1) :: symbol ! symbol of particle
 character(len=8) :: name ! name of particle
 integer :: Z ! charge number of particle
 integer :: N ! neutron number of particle
 integer :: A ! mass number of particle
 real(single) :: spin ! spin of particle
 real(double) :: mass ! mass of particle
end type particle_type

The term “global” is very important; only global objects should be declared here. Other, more
specialized objects, should be declared within the modules which use them. In fact, we may realize
that the Definitions module is not necessary after all, and could be included within the
Database module. This would remove an extra layer of dependency.

The module Database acts as a large F77 COMMON block where all global data can be stored and
easily shared among other modules. In particular, this module will contain some concrete
representations of the abstract objects declared in Definitions.

The Numerical Tools module (to be provided by Kawano) will include the most important
numerical routines that are commonly used in our nuclear reaction codes. This module will certainly
constantly evolve as the needs for new tools are recognized. A first set of routines has been established
according to the needs already revealed within the scope of the first delivered physics modules.

We also decided that some tools to retrieve and calculate simple information from the RIPL database
should become part of ModLib, i.e., they should be either reformatted (if they already exist) or created
following the programming rules of ModLib. In fact, the RIPL-3 project is already dedicated to
providing some of these tools, and it should therefore just be a “translating” problem to make them
compatible with ModLib.

Finally, some so-called evaluation tools such as ENDF formatting and plotting capabilities could
become part of ModLib.

Structure of an Individual Module:

We agreed that each individual module should be written in a standardized form. Not only submitted
modules should follow some specific programming rules, but they should also have a standard header
in order to render their use somehow straightforward.

As an example, here is the header for the Physics module (downloadable from the web):

!===

! MODULE PHYSICS �����! #"%$'&)(* #�+"-,�.*/
!===
!
! GOAL: Provides the values of physical constants as

! recommended in the ENDF-102 manual (Appendix H, April 01 %$ 2 34 -56&)(4 87�.*9:7�"%5; =< 5?>�"%$'&)(4 #�!"%,�.*/
! 2001 revision, Ed. V.McLane).
!
!---
!

! MODULE(S) REQUIRED: ACCURACY @?2 5?&A��/ /B7�9: -9: -C�.*2 5?2 &) -56�+"%,�.*/ %5
!
!---
!
! USE:
!

! To call the module: 01 %&)��2 / 56"%3D(4"%EF&)"#.*5? #&)(* #�+"-,�.*/
!
! > use PHYSICS
!
!---
!
! COMMENTS:
!

! Checked against 1998 CODATA recommended values. GH"%9I #,� %&)��2 / 56"%3D&)(4 #5;&)9I.4J%& .49I =K�J%"%,�2 34LMK
! Ref.: J. Phys. and Chem. Ref. Data, Vol.28,#6, pp. 1713-1852, / 2 �!2 &)��&)2 "%3*5NK�.45? =K�O O OA"-$A& (4 #�!"%,�.4/
! (1999).

! Rev. Mod. Phys., 72,#2, pp.351-495 (2000).
!
!---
!
! RELEASE(S):
!

! Date Release # Author(s) Comments PQ -/ %��5? #2 34$ "-9:�!��& 2 "%3
! ---- --------- --------- --------
! 11/18/2002 0.1 P.Talou Original version
!
!---
!
! AUTHOR(S) INFORMATIONS:
!

! Release 0.1: P.Talou R�.4&)(*"%9S< 5?>�2 34$ "%9I�+��&)2 "-3
! T-16, Nuclear Physics Group
! Los Alamos National Laboratory,
! Los Alamos, NM 87545, USA.
! talou@lanl.gov
!
!===

Obviously, this module is elementary and only limited information is needed for its description, in
particular the section on structure, coding, limitations, etc. However, the main structure can be
regarded as a template.

As already mentioned, the coding itself should follow some standard programming rules, already
partly described on our web site. Eventually, we could come up with a specific document expliciting
in detail the different rules we agree upon.

Regarding such programming rules, the idea of using SPAG configuration files has been raised.

Standard Documentation:

Each module should be delivered with an adequate documentation in the form of a separate file in a
commonly readable format (simple test, pdf, ...). This documentation should describe the physics,
coding details, input/output, etc.

Test Cases:

At least one sample should be provided with each module. This sample will contain a driver code, and
its input and output files, so that potential users can quickly test the module and compare their results
with the ones provided.

Interfaces:

Interfaces between the modules themselves and between a module and existing reaction codes is a
very important topic, since it is required to ensure that there is no conflict in variables and routines
naming, and that the modules from the library can be easily and safely incorporated in our already
well developed reaction codes.

Here are some suggestions made mainly by T. Kawano (thanks!):

T Variables naming: here, we refer to variables which have to be passed as arguments to/from the
module from/to the driver code. As an example, the π constant defined in the Physics module
could be named:

PHpi,

the two first letters refering to the module itself (PHysics), and the rest of the letters corresponding to
the variable itself. Similarly, we will define PHhbar, PHclight, ...

T Routines naming: functions and subroutines used at the interface of the module should also follow
a similar naming idea. For example,

NTGaussLaguerre

corresponding to the Gauss-Laguerre integration subroutine from the Numerical Tools (NT) module.
Again, the two first letters design the module itself, while the rest corresponds to the routine. A

noticeable difference from the variables naming is the capital letter for the first character of the
routine.

Makefiles:

Makefiles are small scripts which can render the installation/compilation/testing of the modules very
easy and straightforward. While working only under UNIX like systems, they are certainly worthwhile
(since most developers use UNIX or Linux anyway). A template will be provided shortly, and should
be available from the web.

C/C++ vs. F90 interface:

During the Geel meeting in 2002, it was decided that the Fortran 90 is the language of choice for this
new library of modules. However, it was also stated that we would accept modules written in C/C++,
as long as they are compatible with the rest of the modules. According to T. Kawano, compatibility
between C and Fortran (at least Fortran 77, not sure for F90) is quite feasible as long as we use only
standard IEEE Single and Double precisions. I personally believe that mixing languages is not a very
good idea, though we may not have much choice about that. Nothing was really decided about that,
except than just waiting to see what comes up. That might just be the best solution...

Single/Double/Real Kind:

This question does not seem to have been settled after all. Should we go with only one Real Kind
definition, or two definitions, basically corresponding to the IEEE standard Single and Double? A
solution is to have both Single and Double defined, and using by default the Double precision for any
variable/function in the modules. In some cases (e.g., very large memory array), it might still be useful
to define variables in Single instead.

Licensing:

This issue is certainly the most controversial and difficult to solve that we had to deal with. In fact, no
definite answer has been achieved. However, all participants agreed that the main objective should be
to freely and fully collaborate and exchange ideas/codes/... among themselves. Problems arise because
of copyright issues inherited from each of our home institutes. The final word on this topic was that
model developers should inquire independently in their own labs about various solutions for
distributing codes (or modules- it might make a difference) outside the institutes.

Version Numbering:

Basically, each module will be attributed a triple digit number x.y.z as

Library . Module-major . Module-minor

The first number ('x') corresponds to a version of the library of modules. The second ('y') and third ('z')
numbers correspond to the module itself. The 'y' number is used when major changes occur since the
last revision. This means that physics and coding contents may have been changed significantly, and
may not be compatible with earlier module versions anymore. On the contrary, the 'z' number
corresponds to minor modifications of the code or/and the physics, and should definitely not affect the
way the module is used from the external driver codes.

For instance, let's consider the Physics module:

Preliminary (beta) version: 1.0.1
First official version: 1.1.0
Minor revisions: 1.1.1, 1.1.2, etc.
Major revision: 1.2.0
New library/new module: 2.1.0 (or 2.2.0 ?)

The question mark on the last point corresponds to the following question: what do we do to the major
module number when the library number is updated? Should it stay at x.2.0, or eventually x.2.14, or
should it be reinitialized at x.1.0? At least, looking at the two modules numbers only, when the major
number is upgraded, then the minor number is always reinitialized to 0. Hence, it might be natural to
do the same thing for the major number of the module when the library number is upgraded.

Delivering of modules:

This will strongly depend on the licensing issue that is still to be resolved. Hopefully, the delivery will
be done freely through the web.

Review process of the modules:

Obviously, all these rules that were agreed upon need to be applied to have any significant impact on
the overall development of the Library. Therefore, a system of peer-review needs to be set up. In short,
we could establish a review system similar to the ones in place for any technical journal. Modules are
sent to one or more editors who then redirect the module to one or two persons for review. This review
process would allow to check that the programming rules have been correctly followed (in this regard,
the SPAG software may be of great value), that all required information (header of the module) is
present, and that the module package is complete, i.e., that the module comes with an attached
documentation, a test code with at least one input and output. The reviewer should also run the test
case on his/her own machine, and compare the results with the output provided by the author(s). The
goal of the review process is not to test the coding or/and the physics contained in the module. This
would require too much time, and would never be complete anyway. If an error/bug is detected by a
potential user later on, then this user should send a “bug report” to the author(s) or/and the developers
list so that this bug can be fixed quickly in the next release of the module.

C. Dunford provided some valuable suggestions regarding this subject. In particular, he compared the
successful management model of CSWEG to the one which could be applied to ModLib. Basically,
the process review could take place in two stages:

 PHASE ModLib CSEWG

 1 SPAG STANEF
 Compile (several platforms) CHECKR, FIZCON
 Assemble documentation Review kit
 Coding and Methods Review Microscopic data review

 2 Testing of results Integral benchmark testing

Since SPAG is already available at BNL, Charlie also voluntereed to take care of the two first items of
the Phase I (Thanks!). Comments ? Suggestions ?

High priority list of modules:

At the end of the meeting, we came up with a fairly long list of modules which could be provided
or/and which are of interest to some developers. However, since a shorter list is definitely more useful,
here is the final short list that was established from the discussions:

U DDHMS preequilibrium code: this code by M.B.Chadwick was already delivered to the
community in Fortran 77. Its translation in Fortran 90 with standards adopted in ModLib will be a
priority.U Fission: a fission module was thought to be important by many developers. Such a module could
encompass many reasonable formulations already present in legacy codes, and fueled by some
special expertise from people like Lynn, Maslov, etc.U ENDF: tools to perform tasks related to the production of evaluated nuclear data files are also quite
important. Such tools could be slowly (but surely) incorporated in a F90 module.

U RIPL-3 contribution: some routines already developed or being developed within the RIPL-2/3
project could be incorporated in a F90 module following ModLib rules. In particular, the interface
between RIPL database and ModLib is considered very important.

Milestones / Deadlines / Meetings / ...

Due to lack of time, and because of the absence of important developers, these items could not be
really addressed during the meeting. Instead, I propose a list of items for every developer to think
about and to return some ideas/suggestions/answers, so we can quickly come to a common ground.

Here is the list of questions/items to be debated:

1. Is the proposed structure for the header of a module ok to everyone? If not, suggestions welcome.

2. Is the overall structure of the library accepted? If not, suggestions please.

3. What do we do about C/C++ vs. F90 interfaces? Wait and See?

4. I propose that a template for Makefiles be defined, and posted on the web for easy download.

5. Single/Double precisions: should we come up with these two definitions (instead of only one real
kind parameter), and by default choose them as the standard IEEE values?

6. Is the naming of variables/routines at the interface of the modules ok?

7. Version numbering ok? If not, suggestions.

8. Licensing question. Every developer should inquire in their own institutes what the offered
possibilities are. Then, we should have a final discussion, either through email, phone or video-
conference.

9. Review process: does that sound right to everyone? If not, suggestions welcome. If yes, then we
should decide about one or two editors (who can then define the rules more precisely), and about
several potential reviewers (I imagine all active developers ?!).

10.High priority list of modules. I believe the first modules already delivered in their preliminary
version (Level density, Width Fluctuation) should be the first to be adapted to follow the accepted
rules, and be submitted through the review process mentioned earlier. Then, is the new list of
modules to be delivered alright? And of course, who should be the developers involved?

Finally, we should decide about some precise milestones to be achieved within some specific
deadlines. Such a deadline could correspond to our next meeting (suggestions?).

P. Talou
T-16, Los Alamos National Laboratory
May 29, 2003

